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“Reinforcement learning is learning what to do — how to map situations to
actions — so as to maximize a numerical reward signal. The learner is not
told which actions to take...but instead must discover which actions yield the
most reward by trying them.”

— Sutton & Barto, 1998
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Key assumptions:

1. PFC circuit is a recurrent neural network

(e.g. Mante et al, Nature 2013; O’Reilly & Frank, Neural Comput. 2006)

2. Synaptic weights within the PFC circuit are adjusted through
model-free, dopamine-driven RL

(e.g. O’Reilly & Frank, Neural Comput. 2006)

3. RL task environment is not fixed, but rather is sampled from a
distribution or family

(e.g. Rougier et al, PNAS 2005)
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Emergent consequence:

e The PFC (RNN) learns its own, autonomous RL procedure, distinct
from the RL algorithm used to set the network weights (‘meta-RL’)

o Implemented in PFC dynamics, and can therefore execute even
when synaptic weights are frozen’

o Differs arbitrarily from the primary RL algorithm (different
hyperparameters, model-based profile, etc.)

o Sculpted by the task environment, therefore exploits consistent
task structure to learn faster

* for important precedents, see Collins & Frank, 2012; O’Reilly & Frank, 2006, Nakahara & Hikosaka, 2012
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e Meta-reinforcement learning: a new framework recasting roles of DA and
recurrent dynamics of PFC within reward-driven learning

e Three key requirements:
o PFC recurrent dynamics integrating past reward, history, and observations

o Primary DA-based RL algorithm that uses reward prediction error to adjust
weights

o Multi-environment task drawn from a distribution

e Emergent, learned RL algorithm implemented by PFC activity dynamics
exploits correlations and task/reward structure



Collaborators

Jane Wang Adam Santoro
Zeb Kurth-Nelson Tim Lillicrap
Dharshan Kumaran David Barrett
Chris Summerfield Dhruva Tirumala
Hubert Soyer Remi Munos
Joel Leibo Charles Blundell
Sam Ritter Demis Hassabis

DeepMind, London UK
Gatsby Computational Neuroscience Unit, UCL



