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“Reinforcement learning is learning what to do — how to map situations to
actions — so as to maximize a numerical reward signal. The learner is not
told which actions to take...but instead must discover which actions yield the
most reward by trying them.”

                                                    — Sutton & Barto, 1998
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Key assumptions:

1. PFC circuit is a recurrent neural network 
        (e.g. Mante et al, Nature 2013; O’Reilly & Frank, Neural Comput. 2006)

 
2. Synaptic weights within the PFC circuit are adjusted through
    model-free, dopamine-driven RL 
        (e.g. O’Reilly & Frank, Neural Comput. 2006)

 
3. RL task environment is not fixed, but rather is sampled from a
    distribution or family
        (e.g. Rougier et al, PNAS 2005)
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! Meta-reinforcement learning: a new framework recasting roles of DA and 
recurrent dynamics of PFC within reward-driven learning

! Three key requirements:

○PFC recurrent dynamics integrating past reward, history, and observations

○Primary DA-based RL algorithm that uses reward prediction error to adjust 
weights

○Multi-environment task drawn from a distribution

! Emergent, learned RL algorithm implemented by PFC activity dynamics 
exploits correlations and task/reward structure
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