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Understanding the brain

• Computational theory / goal

• Algorithm

• Implementation

The three levels by David Marr



Single neuron recording in alert monkey

(After Glimcher)

• Well-controlled behavior

• Recording in awake animal



Our approach: rodent models

• Well-controlled behavior
• Electrophysiology
• Molecular/genetic tools

Water
port

Water
port

Odor
A
B

(Uchida and Mainen, 2003)



Dopamine

Ventral tegmental area (VTA)

Substantia nigra (SNc)

A10: VTA
A9: SNc
A8: retrorubral field 

(From Neuron to Brain)



(CS: conditioned stimulus)

No prediction
Reward occurs

CS predicts reward
Reward occurs

CS predicts reward
No reward occurs

Reward

Reward

Firing of putative dopamine neurons

(Schultz, Dayan, Montague, 1997)

𝛿 𝑡 = 𝑟 𝑡 + 𝛾𝑉( 𝑡 + 1 − 𝑉((𝑡)



Reinforcement learning models

Sensory input

Action

Expected
outcome

Actual 
outcomes

Prediction error

DopamineValues

(After Sugrue et al.,2005) (Doya, 2000) 

(1) (2)



• Reinforcement learning
Temporal difference (TD) learning theory

• Neurobiology
Phasic dopamine

• Animal learning theory
Learning is driven by prediction errors

V

Kamin, Rescorla, Wagner



Dopamine as temporal difference (TD) error



Dopamine as temporal difference (TD) error

t t+1
+ r(t)

V(t) V(t+1)

t: time
r: reward
V: value

State
transitions: 

t+2

V(t+2)

t+3

V(t+3)

• Value function: the sum of all future reward

𝑉(𝑡 + 1)

+ r(t+1) + r(t+2)

𝑉( 𝑡 = 𝑟 𝑡 + 𝑉((𝑡 + 1)

• Temporal difference (TD) error

𝛿 = 𝑟 𝑡 + 𝑉( 𝑡 + 1 − 𝑉((𝑡)

(Sutton, 1988; Sutton & Barto, 1998; Montague et al., 1996; Schultz et al., 1997) 

𝑉 𝑡 = 𝑟 𝑡 + 𝑟 𝑡 + 1 + 𝑟 𝑡 + 2 +⋯

Update 𝑉(𝑡)

𝑉((𝑡) ← 𝑉((𝑡) + α 1 𝛿 (𝛼:	learning rate)



Dopamine as temporal difference (TD) error

t t+1
+ r(t)
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t: time
r: reward
V: value

State
transitions: 
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• Value function: the sum of all future reward

𝛾 1 𝑉(𝑡 + 1)

+ r(t+1) + r(t+2)

𝑉( 𝑡 = 𝑟 𝑡 + 𝛾 1 𝑉((𝑡 + 1)

• Temporal difference (TD) error

𝛿 = 𝑟 𝑡 + 𝛾 1 𝑉( 𝑡 + 1 − 𝑉((𝑡)

(Sutton, 1988; Sutton & Barto, 1998; Montague et al., 1996; Schultz et al., 1997) 

Update 𝑉(𝑡)

𝑉 𝑡 = 𝑟 𝑡 + 𝛾 1 𝑟 𝑡 + 1 + 𝛾3 1 𝑟 𝑡 + 2 +⋯

𝑉((𝑡) ← 𝑉((𝑡) + α 1 𝛿 (𝛼:	learning rate)



Dopamine as temporal difference (TD) error

(Schultz, Dayan, Montague, 1997)
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t=0

CS

CS

Reward omissionTD-error signal

Value

• Learning to predict 
future rewards
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Dopamine as temporal difference (TD) error

(Schultz, Dayan, Montague, 1997)

CS

t=0

CS

CS

Reward omissionTD-error signal

Value

• Learning to predict 
future rewards

CS

t=0



Dopamine as temporal difference (TD) error

(Sutton, 1988; Sutton & Barto, 1998; Montague et al., 1996; Schultz et al., 1997, Watabe-Uchida et al., 2017) 

(+)

(+)

(-)

V(t+1)

V(t)

r

DA

TD	error
(Dopamine)

t t+1
+ r(t)

V(t) V(t+1)

t: time
r: reward
V: value

t+2

V(t+2)

t+3

V(t+3)

+ r(t+1) + r(t+2)

Time

State
transitions: 

𝛿 = 𝑟 𝑡 + 𝑉( 𝑡 + 1 − 𝑉((𝑡)

derivative of V(t)



Dopamine as temporal difference (TD) error

(Sutton, 1988; Sutton & Barto, 1998; Montague et al., 1996; Schultz et al., 1997) 

𝑉((𝑡) =4𝑥6𝑤6(𝑡)
�

�

Temporal
representation

“Tapped delay line”
”Complete serial compound
(CSC)”



Dopamine as temporal difference (TD) error

(Sutton, 1988; Sutton & Barto, 1998; Montague et al., 1996; Schultz et al., 1997) 

𝑉((𝑡) =4𝑥6𝑤6(𝑡)
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Temporal
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• Reinforcement learning
Temporal difference (TD) learning theory

• Neurobiology
Phasic dopamine

• Animal learning theory
Learning is driven by prediction errors

V

Kamin, Rescorla, Wagner



Dopamine as a TD error

• Magnitude

• Probability
• Temporal discounting

• Temporal uncertainty

• Long term value
• Cost / efforts (?)

• Safety 
• Axiomatic proof

(Schultz, Glimcher, Fiorillo, Hikosaka, Phillips, Roitman, Cheer, Uchida, …)



Dopamine as a TD error

• Supporting evidence

• Minor problems

• Serious problems



Topics

• A mouse model for studying dopamine RPE

• Do all dopamine neurons signal RPEs?

• What is the “state” in reinforcement learning?

• How are RPEs computed?

• Diversity of dopamine neurons



Topics

• A mouse model for studying dopamine RPE

• Do all dopamine neurons signal RPEs?

• What is the “state” in reinforcement learning?

• How are RPEs computed?

• Diversity of dopamine neurons



The problem of punishment

(Matsumoto & Hikosaka, 2008; Bromberg-Martin, Matsumoto, Hikosaka, 2010)

• Medial VTA

• Lateral VTA
• SNc

Time – events (sec)



Novel stimuli activate some dopamine neurons

(adapted from 
Kakade and Dayan, 2002)

Attempts to incorporate novelty response into the value framework

- Potential reward or novelty itself is rewarding

- Positive value of exploration



“The cell identification problem”

Extracellular recording



“The cell identification problem”

• Waveforms, spontaneous firing rates, pharmacology

• Recent studies indicate diverse waveforms in dopamine neurons
(e.g. Margolis et al., 2006; Lammel et al. 2008)

(Grace and Bunney, 1983; also see Ungless and Grace, 2012)

1 ms



“The cell identification problem”

• Dopamine

• Non-dopamine

(Schultz, 1986)

• Spike waveforms differ not only by neuron types 
but also relative locations to electrode



Odor-value association task in mice

• Head-restrained mice

• Efficient training (1-2 days)

• Electrophysiology in behaving mice

Odor

Li
ck

/s

Time – odor (s)

Odor
(1 s)

OutcomeDelay
(1 s)

(Cohen, Haesler et al., Nature, 2012)



Three response types in VTA*

Time – odor (s)

*ventral tegmental area

Type I

Type II

Time – odor (s)

N
eu

ro
n

(big reward trials)

Type III

Odor Outcome

(Cohen, Haesler et al., Nature, 2012)



VTA contains multiple neuron types

Dopamine neurons (55-65 %)
GABA neurons (30-40 %)



“The recording problem”

It is one of the peculiar features of most modern neurophysiology that 
the experimentalist…seldom knows which type of neuron he or she is 
listening to…  It is common for experimentalist to record that, say, 25% 
of the neurons studied behave in a particular way, 37% in a different 
way and a further 15% in a third way… There is no indication where 
these different sets of neurons are sending their information, let alone 
exactly what type of neuron they are. This is not science but rather 
natural history.  Rutherford would probably have called it stamp 
collecting.

(Francis Crick, 1999, The impact of molecular biology on neuroscience)



Ernst Rutherford

All science is either physics or stamp collecting  

(As quoted in Rutherford at Manchester (1962) by J. B. Birks)



Optogenetic identification of neuron types

LaserFiber optic

Dopamine
GABA

• Channelrhodopsin-2 (ChR2) in dopamine neurons

(Zhang et al., 2007)

K+

Cl–

Blue light

Na+

Yellow lightLight
K+

Na+

• DAT-Cre (dopamine)
• Vgat-Cre (GABA)

• AAV-FLEX-ChR2

recording
(tetrode)

(Also see; Lima et al., PLoS One, 2009; Cardin et al., Nature, 2010)(Cohen, Haesler et al., Nature, 2012)



Optogenetics

Channelrhodopsin-2 Halorhodopsin

Light-gated ion-channel
Cation channel (H+, Na+, K+, and Ca2+)

from green algae

Light-activated Cl- pump

from halobacteria

Activation Inactivation

Tool 1



Cre/loxP recombination system

Cre-recombinase

• Transgenic mice: Cre-recombinase is expressed in a specific neural 

population.

• Inject adeno-associated virus carrying floxed-channerhodopsin-2 (ChR2)

Tool 2



Optogenetic identification of neuron types

Criteria 
1) Latency < 2-4 ms
2) Follow high frequency stimulation
3) Spike shapes are almost identical between light-evoked and spontaneous spikes

Laser

Spikes



Neuron-type-specific signals in VTA

• Dopamine neurons

• GABA neurons

0 1 2 3
Time – odor (s)

Odor

0 1 2 3

Odor

Time – odor (s)

(Cohen, Haesler et al., Nature, 2012)



RPE?

0 1 2 3

Odor

Time – odor (s)

(Cohen, Haesler et al., Nature, 2012)



(Fiorillo, Newsome and Schultz, 2008; also see, Kobayashi et al., 2008)

• Effect of delays

Delay from cue onset

RPE?

Delay à reduced reward predictability à increased dopamine RPEs



RPE?

sp
ik

es
/s

ec

Time – odor (s)

• Omission of reward causes suppression of firing.

Odor Outcome

Time – odor (s)

Reward omission (negative prediction error)

(Cohen, Haesler et al., Nature, 2012)



Recording from optogenetically-identified dopamine neurons

(Tian and Uchida, Neuron, 2015)

RPE coding by VTA dopamine neurons



What about aversive stimuli?

Biphasic dopamine response to air puff or air puff-predictive cues

(Cohen, Haesler et al., Nature, 2012)



Context-dependency of dopamine aversion response

(Matsumoto, Tian, Uchida and Watabe-Uchida, eLife, 2016)

Nature Reviews Neuroscience, 2016



Kobayashi and Schultz, 2014

Reward contexts extends dopamine signals to unrewarded stimuli

Context-dependency of dopamine aversion response

(Matsumoto, Tian, Uchida and Watabe-Uchida, eLife, 2016)



Context-dependency of dopamine aversion response

• High reward context

• Low reward context

(Matsumoto, Tian, Uchida and Watabe-Uchida, eLife, 2016)



What do GABA neurons signal?



VTA GABA neurons signal reward expectation

• Delivery of reward has little impact on firing.

• The activity reflects the expected time of reward.

• GABA neuron

Odor Outcome

(Cohen, Haesler et al., Nature, 2012)



VTA GABA neurons may provide the reward expectation 
signal to dopamine neurons

• Model (inputs to dopamine neurons)

Cue

Reward

Cue Reward

Reward
expectation

excitatory

inhibitory

• Output (dopamine neurons)

Reward 
prediction 
error

VTA GABA neurons

VTA Dopamine neurons

(after Houk, Adams, Barto, 1995; Hazy, Frank, O’Reilly, 2010)



Addiction as impaired prediction error signaling

(Luscher & Malenka, 2011; Hyman, Malenka & Nestler, 2006)

• Addictive drugs inhibit VTA GABA neurons
• Persistent reinforcement signals by addictive drugs (Redish, 2004)

Opioids (heroin, morphine)
GHB (liquid ecstasy)
Benzodiazepines (downers, tranqs)
Cannabinoids (marijuana)

Cocaine
Amphetamine (speed)
MDMA (ecstasy)





RPE?

0 1 2 3

Odor

Time – odor (s)

(Cohen, Haesler et al., Nature, 2012)



(Bayer and Glimcher, 2005)

Dopamine = Present reward – weighted sum of previous rewards

• Regression analysis

FR = b0 + b1rt + b2rt-1 + b3rt-2 + ×××

FR: firing rate of dopamine neurons
rt: reward size at trial t
b: regression weight

R
eg

re
ss

io
n 

w
ei

gh
t

Trial
tt-2t-4t-6t-8t-10

Fi
rin

g 
ra

te
 (H

z)

Reward



Divisive (multiplicative) “gain” change

Carandini & Heeger, 2011; Bonin et al., 2005 Williford & Maunsell, 2006

Fi
rin

g 
ra

te
 (s

pi
ke

s/
s)



Testing computations

Divisive Subtractive

Stimulus

Re
sp

on
se

Stimulus

Re
sp

on
se

(Eshel, Bukwich, Rao, Hemmelder, Tian and Uchida, Nature, 2015)



Reward expectation triggers subtraction

Odor A

No odor

...
1.5 s

(Eshel, Bukwich, Rao, Hemmelder, Tian and Uchida, Nature, 2015)

• Task

0 10 20

0

5

10

Reward size (μL)

Re
sp

on
se

 (s
pi

ke
s/

s)
Subtract
Divide

n = 40

Expected

Unexpected

...

*P < 0.001, bootstrap to compare model fits

*

(0-600ms after reward onset)



Reward expectation triggers subtraction

Odor A

No odor

...
1.5 s

• Task

...
0 10 20

0

5

10

Reward size (μL)
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Expected
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*
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Reward size (μL)

n = 40

(Eshel, Bukwich, Rao, Hemmelder, Tian and Uchida, Nature, 2015)



Subtraction is scaled by reward response

Odor A

No odor

...
1.5 s

• Task

...

(Eshel, Bukwich, Rao, Hemmelder, Tian and Uchida, Nature, 2015)

U
ne
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te
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–
Ex

pe
ct

ed
(s

pi
ke

s/
s)

0 5 10

0

5

10

Unexpected 2.5 μL reward
(spikes/s)

R = 0.81, P < 10-6



Dopamine neurons follow a universal template

“Universal function”

x α

0 10 20

0

5

10

Reward size (µL)

Re
sp

on
se

(s
pi

ke
s/

s)

Population Unexpected
Expected

(Eshel, Bukwich, Tian and Uchida, Nature Neurosci. 2016)

Reward sizeReward size

Sp
ik

es
/s

Reward size

0

20 Neuron #1 Neuron #2 Neuron #3

Predicted response
(spikes/s)

Ac
tu

al
 re

sp
on

se
(s

pi
ke

s/
s)

α = 0.65 α = 1.1 α = 1.7

n = 40



Summary

• Nearly all dopamine neurons exhibited phasic excitations to reward-
predictive cues and reward.

• Some dopamine neurons show biphasic responses to aversive events 
but these responses are diminished in low reward contexts.

• VTA GABA neurons signal reward expectation, which can suppress 
dopamine reward responses when reward is expected.

• Reward expectation reduces dopamine reward responses in a 
subtractive fashion. 

• Subtraction was scaled by a neuron’s responsiveness to reward. This 
relationship may naturally arise from balanced excitation and 
inhibition.



Population coding



(Matsuda et al. 2009) (Schultz, 1999)

Cortex

Striatal
neuron

Dopamine

What is a good teaching signal?
Many synapses, each synapse



Homogeneity of dopamine signals

Consistency

Common inputs
balanced excitation/inhibition



Recording sites



Topics

• A mouse model for studying dopamine RPE

• Do all dopamine neurons signal RPEs?

• What is the “state” in reinforcement learning?

• How are RPEs computed?

• Diversity of dopamine neurons



• Temporal difference (TD) learning theory• Phasic dopamine

• Animal learning theory

V

Kamin, Rescorla, Wagner



Recording from optogenetically-identified dopamine neurons

(Tian and Uchida, Neuron, 2015)

RPE coding by VTA dopamine neurons



Dopamine neurons exhibit exquisite sensitivity to 
reward expectation over time

(Hollerman & Schultz, 1998, Dopamine neurons report an error in the temporal prediction of reward during learning)



The TD model does not explain Hollerman & Schultz (2008)

(Daw et al., 2006)



Dopamine neurons exhibit exquisite sensitivity to 
reward expectation over time

(Hollerman & Schultz, 1998, Dopamine neurons report an error in the temporal prediction of reward during learning)

• Narrow time window for suppression



Dopamine response in a variable delay condition

Reward response

Reward expectation

(Fiorillo, Newsome, Schultz, 2008)

Cue Reward
Variable

delay



Expectation over time follows hazard rate

• Hazard rate: Likelihood that an event will occur given that 
it has not yet happened.

ℎ 𝑡 =
𝑝𝑑𝑓(𝑡)

1 − 𝑐𝑑𝑓(𝑡)
Time

Time

Probability

Cumulative

Hazard

Time

1

h(t)	: Hazard rate
pdf(t)	: Probability density

cdf(t)	: Cumulative distribution

t0

t0

t0

𝑝𝑑𝑓(𝑡)
1 − 𝑐𝑑𝑓(𝑡)



Timing sensitivity of dopamine neurons

• Dopamine “dip” at the time of expected reward
• Schultz, Dayan, Montague (1997)
• Hollerman and Schultz (1998)
• Lateral habenula: Matsumoto and Hikosaka (2008), Tian and Uchida (2015)

• Hazard-like modulation of dopamine RPE
• Nakahara et al. 2004
• Fiorillo, Newsome, Schultz, 2008
• Nomoto et al, 2010
• Pasquereau and Turner, 2015



Question

• What is the shape of the expectation function 
across time?

• Is hazard rate a good explanation for it? 
• Which brain areas are involved in computing 

reward expectation across time? 



Clara Starkweather Samuel Gershman



Task

Odor

A

B

C

D

• Task 1: P(reward) = 1

• Task 2: P(reward) = 0.9

Odor
Reward

Discretized Gaussian

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Prediction

Probability

Hazard

Task 1
100% Rewarded

Task 2
90% Rewarded

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Hazard

Data cannot be explained by hazard rate

Dopamine
(Data) Sp

ik
es

/s

Sp
ik

es
/s

Time (s) Time (s)

n = 30* n = 43*

*Optogenetically-identified 
VTA dopamine neurons

Task 1
100% Rewarded

Task 2
90% Rewarded

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Can a simple learning algorithm explain our data?

• Temporal Difference (TD) learning
• Moore et al. (1998), Sutton and Barto (1990), Montague et al. (1996), 

Schultz, Dayan, Montague (1997)
• Keeps track of time after stimulus onset as a series of time steps

– “Complete serial compound (CSC)”

𝑉 𝑡 = 𝑟 𝑡 + 𝛾F𝑟 𝑡 + 1 + 𝛾3𝑟 𝑡 + 2 +⋯

𝑉( 𝑡 = 𝑟 𝑡 + 𝛾𝑉((𝑡 + 1)

𝛿 𝑡 = 𝑟 𝑡 + 𝛾𝑉( 𝑡 + 1 − 𝑉((𝑡)



Classic TD learning cannot explain our data

Task 1
100% Rewarded

Task 2
90% Rewarded

Dopamine
(Data) Sp

ik
es

/s

Sp
ik

es
/s

Time (s) Time (s)

TD Model

Time (a.u.) Time (a.u.)

n = 30 n = 43

RP
Es

RP
Es

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



TD learning with CSC with reset 
generates hazard-like dynamics

Time (a.u.) Time (a.u.)

Task 1
100% Rewarded

Task 2
90% Rewarded

TD Model
+

“reset”

(cf. Daw et al. 2006)

Dopamine
(Data) Sp

ik
es

/s

Sp
ik

es
/s

Time (s) Time (s)

n = 30 n = 43

RP
Es

RP
Es

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Can a proposed modification to TD learning explain our data?

• Animals have to infer which “state” they are in.
• Proposed amendment

– TD + belief state (rather than CSC) 
– Belief state = p(state | observations)
– Daw et al, 2006; Rao et al, 2010

• RL models must operate on a belief state

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Belief state model

States:
- Reward will come (ISI)
- Reward won’t come (ITI)

Probability

Belief state

Time

(Daw et al., 2006)

ISI ITI

stim

reward

ISI
100% reward
(deterministic)

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Belief state model

States:
- Reward will come (ISI)
- Reward won’t come (ITI)

Probability

Belief state

Time

(Daw et al., 2006)

ISI ITI

stim

reward

ISI ITI
90% reward
(probabilistic)

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Expectation across time

• Dynamic Bayesian Inference

• Prior knowledge



A semi-Markov model of trace conditioning

(Daw et al., 2006)

• State transitions
• Dwell time distribution



Belief state TD model

• Partially observable Markov decision process

Task 1 (100% reward)

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Belief state TD model

• Partially observable Markov decision process

Task 2 (90% reward)

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Belief state TD model

Task 1
100% Rewarded

Task 2
90% Rewarded

ISI ISI

ITI



Belief state TD model captures data

Sp
ik

es
/s

Sp
ik

es
/s

Time (s) Time (s)

Task 1
100% Rewarded

Task 2
90% Rewarded

Dopamine
(Data)

n = 30 n = 43

Belief state TD

RP
E

RP
E

Time (a.u.) Time (a.u.)
(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



• Normalized by the responses to unexpected reward

(Starkweather, Babayan, Uchida, Gershman, Nature. Neurosci. 2017)



Summary

• Dopamine RPEs are shaped by
• Interval timing (hazard rate)
• Hidden state inference (belief state)

Probability

Belief state

Time

ISI ITI

stim

reward

ISI ITI



What brain area conveys belief state to dopamine system?

• Hidden state inference tied to timing
– Candidate area: mPFC

• Kim et al, 2009; 2013
• Xu et al, 2014

mPFC?



mPFC inactivationàimpairment of interval 
timing behavior 

Xu et al, 2014

Kim et al, 2009



mPFC inactivation à mild effect on 
dopamine RPEs

Jo and Mizumori, 2013 Jo and Mizumori, 2015



Chemogenetic inactivation of mPFC
KORD:
kappa-opioid receptor-based DREADD
(Vardy et al., 2016)

1 1

Tool 3

(Starkweather, Gerhsman, Uchida, unpublished)



mPFC inactivation

Task 1 (100% reward) Task 2 (90% reward)

n = 41n = 42

n = 42
n = 47



Changes of individual neurons in Task 2

1 example neuron:

1 example neuron:

Saline

SalB

(Starkweather, Gerhsman, Uchida, unpublished)



mPFC inactivation does not affect
the time course of anticipatory licking

*Licking behavior on 10% reward omission trials

Saline SalB

(Starkweather, Gerhsman, Uchida, unpublished)



mPFC inactivation does not impair 
timing-related aspects of RPE

(Starkweather, Gerhsman, Uchida, unpublished)



Model-based predictions

What changes in the model recapitulate the observations?

(Starkweather, Gerhsman, Uchida, unpublished)



Simulating specific impairments in the model

Task 1
100% Rewarded

Task 2
90% Rewarded

ISI ISI

ITI

(Starkweather, Gerhsman, Uchida, unpublished)



Modeling mPFC inactivation as a timing deficit

• Transition matrix stores 
knowledge of dwell time
– Timing ‘lesion’ simulated by 

blurring transition matrix 
(Takahashi et al, 2016)

– Ways to simulate timing deficit:
• Increase Weber fraction

(Starkweather, Gerhsman, Uchida, unpublished)



Modeling mPFC inactivation as a timing deficit

(Starkweather, Gerhsman, Uchida, unpublished)

Model:



Modeling mPFC inactivation as a timing deficit

Intact Timing 
Impaired

(Starkweather, Gerhsman, Uchida, unpublished)



Modeling mPFC inactivation:
Hidden state inference deficit

100% Rewarded 90% Rewarded

(Starkweather, Gerhsman, Uchida, unpublished)



Modeling mPFC inactivation
as a hidden state inference deficit

(~60%)

(Starkweather, Gerhsman, Uchida, unpublished)

Model:



Modeling mPFC inactivation 
as a hidden state inference deficit

Intact State inference 
impaired

(Starkweather, Gerhsman, Uchida, unpublished)



Summary

• Dopamine RPEs are shaped by
• Interval timing (hazard rate)
• Hidden state inference (belief state)

• A TD model in which reward expectation is computed 
over belief states uniquely explains dopamine 
responses.

• Processes of interval timing and hidden state inference 
can be separated experimentally.



Dopamine RPE and inference





Topics

• A mouse model to study dopamine RPE

• Do all dopamine neurons signal RPEs?

• What is the “state” in reinforcement learning?

• How are RPEs computed?

• Diversity of dopamine neurons



(CS: conditioned stimulus)

No prediction
Reward occurs

CS predicts reward
Reward occurs

CS predicts reward
No reward occurs

Reward

Reward

Firing of putative dopamine neurons

(Schultz, Dayan, Montague, 1997)

𝛿 𝑡 = 𝑟 𝑡 + 𝛾𝑉( 𝑡 + 1 − 𝑉((𝑡)



Models of RPE computation

(Kawato and Samejima, 2007)

(a) (b) (c)



Where do other inputs come from?

• Conventional tracers are taken up non-specifically…

Input

Output



Where do other inputs come from?

Input

Output



Input

Output

Where do other inputs come from?



TVA (virus receptor)

RG (essential for hopping)

Transfected plasmids
Rabies virus

• Retrograde
• Monosynaptic

Rabies virus-mediated monosynaptic input tracing

Tool 4



TVA: Virus receptor

RG (Rabies glycoprotein):
essential for transsynaptic hopping

Rabies virus-mediated input tracing

(Watabe-Uchida et al., Neuron, 2012)

Miyamichi et al. 2010
Haubensak et al. 2010
Wall et al. 2010

AAV: adeno-associated virus

promoter

AAV-FLEX-RG

AAV-FLEX-TVA-mCherry

SADΔG-EGFP(EnvA)



Virus receptor

Required for transsynaptic spread

Rabies virus-mediated input tracing

(Watabe-Uchida et al., Neuron, 2012)

AAV: adeno-associated virus

promoter

AAV-FLEX-RG

AAV-FLEX-TVA-mCherry

SADΔG-EGFP(EnvA)



Direct inputs to dopamine neurons

Rabies virus

Rabies virus
(trans-synaptic)

Inputs to VTA dopamine neurons
Inputs to SNc dopamine neurons

(Watabe-Uchida et al., Neuron, 2012)



Recording from direct inputs of dopamine neurons

Rabies virus

Laser
Fiber optic

recording
(tetrode)

Dorsal striatum

Ventral striatum

Ventral pallidum

Subthalamic
nucleus

Lateral
hypothalamus

RMTg

PPTg

PPTg: pedunculopontine nucleus
RMTg: rostromedial tegmental area

VTA

ChR2-rabies virus
(trans-synaptic)
(Osakada et al., 2011)

(Tian et al., Neuron, 2016)



Recording from direct inputs to dopamine neurons

Ju Tian Mitsuko Watabe-Uchida

(Tian, et al., Neuron 2016)

99 mice 

1,931 neurons from 7 input areas

205 identified input neurons



Odor
(1 s) OutcomeDelay

(1 s)

P = 0.9

P = 0.5

P = 0.8

P = 0

A
B
C
D

(Tian, et al., Neuron 2016)



Activity of input neurons (Pedunculopontine tegmental area)
sp

ik
es

/s
90% water
50% water
nothing

Time - odor (sec)
(Tian, et al., Neuron 2016)



Activity of input neurons (Ventral striatum)

Time - odor (sec)

sp
ik

es
/s

90% water
50% water
nothing

(Tian, et al., Neuron 2016)



Diverse firing patterns of identified input neurons

All identified inputs (n = 205) and VTA neurons

35

23

18

7

46

21

55

31

N

0 50 100

Neurons (%)

Time – odor (s)Time – odor (s)
(Tian, et al., Neuron 2016)



Pure reward coding neurons?

90% water
50% water

omission
50% water

50% water

nothing

Pure reward

With cue response

Without cue response

(Tian, et al., Neuron 2016)



Pure expectation coding neurons?

90% water
50% water

omission
50% water

50% water

nothing

Pure reward

Pure expectation

(Tian, et al., Neuron 2016)



Many input neurons encode both reward and expectation

90% water
50% water

omission
50% water

50% water

nothing

Mixed 
(reward, expectation)

Pure reward

Pure expectation

(Tian, et al., Neuron 2016)



Mixed coding of reward and expectation signals 
in identified input neurons

(Tian, et al., Neuron 2016)



Some input neurons already have RPE signals

Sp
ik

es
/s

Ventral pallidum Lateral hypothalamus PPTg

Rewarded

Omitted

0 1 2 3
20

30

40

Time-odor (s)

Sp
ik

es
/s

 

 

Reward (P=0.9)
Reward (P=0.5)
Reward (P=0)

Sp
ik

es
/s

cue reward cue reward cue reward

(Tian, et al., Neuron 2016)



Identified input neurons encode RPE signals

(Tian, et al., Neuron 2016)



Precise weights of inputs are not required 
for reading out of RPE signals

(Tian, et al., Neuron 2016)



RPE-like responses without fine tuning

(Tian, et al., Neuron 2016)



RPE-like responses without fine tuning

(Tian, et al., Neuron 2016)



Activity of input neurons (summary)

• All tested areas contain neurons with diverse firing patterns.

• Most neurons do not encode a single variable. Information about 
reward and expectation are already combined in a complex 
manner.

• RPEs are already partially computed in some input neurons.

• Despite these complexities at the level of inputs, once they are 
combined, dopamine neurons signal RPEs in an extremely 
homogeneous fashion.

• Random combinations of inputs can recapitulate aspects of RPEs 
except for some specific components such as their response 
during air puff or reward omission.



Reward expectation triggers subtraction

0 10 20

0

5

10

Reward size (μL)

Re
sp

on
se

 
(s

pi
ke

s/
s)

Subtract
Divide

n = 40

Expected

Unexpected



Understanding computation (arithmetic) in the brain

δ = r + V(t) – V(t-1) 

δ = Vactual – Vexpected

Input

Outputf



Models of RPE computation

(Kawato and Samejima, 2007)

(a) (b) (c)



Arithmetic in the brain

• Representation might not be simple (pure)

• Computation might be distributed and/or gradual
• Mixing information (“mixed selectivity”) in non-linear way may 

expand the space of information coding and/or facilitate the 
readout of downstream neurons (Fusi et al., 2016).

• Representation and computation may be embedded in patterns 
of population activities (Rigotti et al. 2013; Mante et al., 2013; 
etc. )

• Computing with recurrent network and loop. Theory??



+

–



Models of RPE computation

(Kawato and Samejima, 2007)

(a) (b) (c)



(Wikipedia)



Deep learning

CAT!
(recognition)

https://www.quora.com/What-is-a-convolutional-neural-network



Topics

• A mouse model to study dopamine RPE

• Do all dopamine neurons signal RPEs?

• What is the “state” in reinforcement learning?

• How are RPEs computed?

• Diversity of dopamine neurons



Dopamine neurons broadcast reward prediction error (RPE)

Dopamine
(VTA/SNc)

Striatum

RPE



Do all dopamine neurons signal RPEs?

Diversity of dopamine neurons

• Anatomy (inputs)

• Dopamine signals (fiber fluorometry)



Direct inputs to dopamine neurons

(Watabe-Uchida et al., Neuron, 2012)

Rabies virus

Rabies virus
(Wickersham/Callaway)

Inputs to VTA dopamine neurons
Inputs to SNc dopamine neurons



Toward large-scale mapping

• CLARITY (brain-clearing method)

• Light-sheet imaging
• Automated analysis

• Registering each brain to a standard brain (atlas)

• Cell counting

(Menegas et al., eLife, 2015)



CLARITY: a brain-clearing method
Tool 5

(Chung et al., Nature, 2015)



CLARITY: a brain-clearing method
Tool 4



Light-sheet microscopy
Tool 5



CLARITY + Light-sheet imaging

Cortex

Striatum

(Menegas et al., eLife, 2015)



Dorsal striatum

Ventral striatum

Tail of striatum

Globus pallidus

Central amygdala

Orbitofrontal cortex

Medial prefrontal cortex

Lateral habenula

Projection site Inputs

(Menegas et al., 
eLife, 2015)

D
op

am
in

e 
ne

ur
on

 p
op

ul
at

io
n

(Also see, 
Lerner et al., 2015; 
Beier et al., 2015)

Tail of striatum



Unique input pattern for TS dopamine

(Menegas et al., eLife, 2015)

Ventral striatum
(VS)

Dorsal striatum
(DS)

Tail of the striatum
(TS)

• Inputs to dopamine neurons

Projection 
target



TS dopamine: anatomically unique population

VTA

Striatum

SNc

TS



Controversy

Do all dopamine neurons signal reward prediction errors?

• Aversive stimuli
- Some dopamine neurons are activated by aversive stimuli
(Matsumoto & Hikosaka, 2009; Lerner et al., 2015)

• Novel stimuli
- Potential reward or novelty itself is rewarding

- Positive value of exploration
(Kakade & Dayan, 2002; Horvitz et al., 1997)



Calcium imaging at dopamine projection targets

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)

• Fiber fluorometry (photometry)

• Calcium indicator (GCaMP6m) in dopamine neurons
• Head-fixed mice
• Classical conditioning (reward, air puff, neutral stimuli)

Kudo et al. (1992)
Davis and Schmidt (2000)
Adelsberger et al. (2005)
Murayama et al. (2007)

Cui et al. (2013)
Gunaydin et al. (2014)
Lerner et al. (2015)
Parker et al. (2016)
Howe and Dombeck (2016)

Tool 6



Ventral striatum (VS) dopamine signals RPE
Ventral (VS)

CS US
dF

/ F

CS: novel odor
US: reward



Novel stimuli activate the tail of the striatum (TS)
Ventral (VS) Tail (TS)

CS US CS US
dF

/ F

dF
/ F

CS: novel odor
US: reward



Novel stimuli activate TS but not VS dopamine
Ventral (VS) Tail (TS)

CS CS

dF
/ F

dF
/ F

No outcome No outcome



Responses to reward are relatively similar across areas

Ventral (VS) Dorsomedial (DMS) Dorsolateral (DLS) Tail (TS)

N 25 8 8 24

Time	(s) Time	(s) Time	(s) Time	(s)

Unexpected water
Expected water
Omitted water
Nothing odor

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)



Responses to air puff are distinct among striatal areas

Ventral (VS) Dorsomedial (DMS) Dorsolateral (DLS) Tail (TS)

N 25 8 8 24

Time	(s) Time	(s) Time	(s) Time	(s)

Unexpected air puff
Expected air puff
Omitted air puff
Nothing odor

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)



Mild tones activate TS but not VS dopamine

Ventral (VS) Tail (TS)

Time	(s) Time	(s)

CS US CS US

~ 55 dB

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)

Odor Tone Odor Tone



Reward Air puff

Novel odor Nothing

TS

VS

DLS

DMS

Response
(dF / F)



Conclusion

• Dopamine neurons projecting to the ventral striatum (VS) 
signal canonical value prediction errors.

(Schultz, Glimcher, Phillips, Roitman, Cheer etc.)

• Dopamine neurons projecting to the tail of the striatum 
(TS) form a distinct population both anatomically and 
functionally.

• TS dopamine is activated by salient stimuli
(cf. lateral SNc: Matsumoto & Hikosaka, 2009)

• Novel stimuli activate TS but not VS dopamine
• Dopamine neurons’ responses to novel stimuli can be 

understood as a part of general salience signal in TS but 
unlikely to be a positive value of exploration (“novelty 
bonus”).

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)



+1.50 mm +1.25 mm +1.00 mm 0 mm -1.25 mm

DAT/mCherry



The tail of the striatum (TS) receives 
inputs from sensory cortices

Cortex

Visual
Auditory

Temporal association (TEa)
Entorhinal, lateral

Perirhinal

(Hintiryan et al., 2016; also see Hunnicutt et al. 2016)

TS

Striatum



• Associability (the effectiveness of associative learning)
– US associability ∝ 𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Widrow and Hoff, 1960; Rescorla & Wagner, 1972)

– CS associability ∝ 𝐶𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑟	𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Macintosh, 1975; Wagner, 1978; Pearce & Hall, 1980)

CS US

Time

Attention Teaching signal



• Associability (the effectiveness of associative learning)
– US associability ∝ 𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Widrow and Hoff, 1960; Rescorla & Wagner, 1972)

– CS associability ∝ 𝐶𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑟	𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Macintosh, 1975; Wagner, 1978; Pearce & Hall, 1980)

CS US

Time

Attention Teaching signal

CS

CS
CS

CS

CS

CSCS

CS



• Associability (the effectiveness of associative learning)
– US associability ∝ 𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Widrow and Hoff, 1960; Rescorla & Wagner, 1972)

– CS associability ∝ 𝐶𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑟	𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Macintosh, 1975; Wagner, 1978; Pearce & Hall, 1980)

CS US

Time

Attention Teaching signal

CS

CS
CS

CS

CS

CSCS

CS



• Associability (the effectiveness of associative learning)
– US associability ∝ 𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Widrow and Hoff, 1960; Rescorla & Wagner, 1972)

– CS associability ∝ 𝐶𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑟	𝑈𝑆	𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

(Macintosh, 1975; Wagner, 1978; Pearce & Hall, 1980)

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)

- VS dopamine: US associability (reward prediction error)

- TS dopamine: CS associability (attention)
- TS attention system may help select behaviorally-relevant stimuli 

to increase the efficiency of reinforcement learning.



Distinct dopamine signals in striatal regions 

• Ventral striatum
– Value prediction error (VPE)

• Dorsal striatum (dorsomedial and dorsolateral)
– Mixture of VPE, salience and motion*(?)

• Tail of the striatum
– General salience (attention)

• Attention for associative learning (CS associability?)

*cf. Jin and Costa (2010)
Howe and Dombeck (2016)
Parker et al. (2016)
Barter et al. (2015)

Also see, Lerner et al. (2015)

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)



Start/stop signal
NATURE 2016



Dopamine as a TD error

• Supporting evidence

• Minor problems

• Serious problems



Future questions

• Defining dopamine signals at different targets. 

• What does dopamine do in each target? 
Regulate plasticity, ongoing activity

• Do different regions of the striatum use the 

same plasticity rule?

• What are the functions of dopamine in each 

target? 



Distinct cortico-basal ganglia systems

VTA

Striatum

RPE

SPE

SNc

Visual / auditory

PFC

Reinforcement learning

Attention

Motor

SPE: salience prediction error

• Novelty
• Punishment
• Reward



Dopamine diversity

(Menegas, Babayan, Uchida, Watabe-Uchida, eLife, 2017)

Reinforcement
learning Attention

Value prediction error Salience prediction errorDopamine
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Dopamine regulates neural plasticity in the striatum

C
on

tro
l

Dopamine inputs
(bath application)

• membrane potential depolarization
(EPSP: excitatory postsynaptic synaptic potentials)

• With dopamine, depressing synapse gets facillitatory

Medium spiny neuron
(record)

Cortical inputs
(stimulate)

(Wickens et al., 1996)

D
op

am
in

e

baseline 5 min 10 min 20 min

cerebral cortex

thalamus

VTA
SNc

striatum
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Dopamine input
(ChR2)

Glutamatergic input
(Glu-uncaging) Amperometry

Optogenetics

Uncaging

EPSP



• STDP (spike-timing dependent plasticity)

Pre Post



A window for dopamine reinforcement



Non-canonical firing patterns



Cocaine infusion
Audiovisual stimulus

• Dopamine increase before 
initiation of movement

• Cyclic voltametry



Start/stop signal

• Mouse performing lever pressing with a fix-ratio (8) schedule

(Xin and Costa, 2010)



Ramping dopamine

• Freely-moving rats
• T-maze
• Cyclic voltammetry

(Howe et al., 2013) 



Ramping dopamine

(Fiorillo et al., 2003) 





Dopamine neurons projecting to different areas have 
different properties

(Lammel et al. 2014)



Multiple dopamine hypothesis

• Movement initiation/termination
• Reward
• Wanting, seeking
• Pleasure, hedonic
• Prediction error (learning, action selection)
• Salience/attention
• Incentive salience
• Motivation/energizing behavior
• Uncertainty
• Cost/benefit computation 

(Wise, Berridge, Dayan, Niv, Schultz etc., ….) 



Recording sites



Origins of dopamine projections

(Björklund & Dunnett, 2007)




